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Abstract. Although Arctic marine ecosystems are chang-
ing rapidly, year-round monitoring is currently very limited
and presents multiple challenges unique to this region. The
Chukchi Ecosystem Observatory (CEO) described here uses
new sensor technologies to meet needs for continuous, high-
resolution, and year-round observations across all levels of
the ecosystem in the biologically productive and seasonally
ice-covered Chukchi Sea off the northwest coast of Alaska.
This mooring array records a broad suite of variables that fa-
cilitate observations, yielding better understanding of physi-
cal, chemical, and biological couplings, phenologies, and the
overall state of this Arctic shelf marine ecosystem. While
cold temperatures and 8 months of sea ice cover present chal-
lenging conditions for the operation of the CEO, this extreme
environment also serves as a rigorous test bed for innova-
tive ecosystem monitoring strategies. Here, we present data
from the 2015–2016 CEO deployments that provide new per-
spectives on the seasonal evolution of sea ice, water column
structure, and physical properties, annual cycles in nitrate,
dissolved oxygen, phytoplankton blooms, and export, zoo-
plankton abundance and vertical migration, the occurrence

of Arctic cod, and vocalizations of marine mammals such as
bearded seals. These integrated ecosystem observations are
being combined with ship-based observations and modeling
to produce a time series that documents biological commu-
nity responses to changing seasonal sea ice and water tem-
peratures while establishing a scientific basis for ecosystem
management.

1 The gateway to the Arctic Ocean

The Chukchi continental shelf is the seasonally ice-covered
entryway of Pacific-origin waters flowing northward into the
Arctic Ocean. An oceanic pressure and elevation differential
between the Pacific and the Arctic oceans is the driving force
for this transport (Stigebrandt, 1984), moving water, heat, nu-
trients, organic carbon, and organisms northward and lead-
ing to transformations on the shelf en route to the deep Arc-
tic Ocean. Large late spring and summertime phytoplankton
blooms (Sambrotto et al., 1984; Springer et al., 1996; Arrigo
et al., 2014; Hill et al., 2018) make the Chukchi continen-
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tal shelf an extremely productive marine ecosystem that sup-
ports a thriving benthos (Grebmeier et al., 2006), zooplank-
ton (Ershova et al., 2015), seabirds (Kuletz et al., 2015), and
marine mammals (Hannay et al., 2013).

The Chukchi Sea shelf is part of a broader Arctic sys-
tem undergoing rapid change. The Arctic near-surface air
temperature is increasing almost twice as fast as the global
average (Serreze and Francis, 2006; Stocker et al., 2013).
On the Chukchi Shelf, annual average sea surface temper-
atures have been as much as 0.8 ◦C warmer during the last
2 decades compared to the average of the 1900–2016 period
of record (Smith et al., 2008, Fig. 1). Warming has led to
a > 40% Arctic-wide decrease in summertime sea ice ex-
tent over the last 4 decades (Serreze and Stroeve, 2015). In
the Chukchi and Beaufort seas, ice cover has decreased by
1.24 days year−1 since 1979, a trend that accelerated to a de-
crease of 12.84 days year−1 in the 2000–2012 period (Frey
et al., 2015). The freshwater content of the Arctic Ocean
has also increased profoundly since the 1990s, with poten-
tially large effects on the global thermohaline circulation
(McPhee et al., 2009; Proshutinsky et al., 2009). Anticy-
clonic winds, sea ice melt, increased precipitation, and runoff
are suggested to be the contributing factors to the widespread
freshening of the Arctic Ocean (McPhee et al., 2009; Mori-
son et al., 2012; Bintanja and Selten, 2014). Pacific Arctic
storm frequency and intensity has also increased over the last
25 years (Pickart et al., 2013). This increased storm activ-
ity corresponds with wintertime Northern Hemisphere tem-
perature increases, which has likely led to a northward shift
of Northern Hemisphere storm tracks (McCabe et al., 2001;
Hakkinen et al., 2008). High-latitude marine ecosystems
are also particularly vulnerable to ocean acidification (Orr,
2011). Due to naturally lower carbonate ion concentrations
[CO2−

3 ] and accelerated decrease in [CO2−
3 ] as a result of sea

ice and glacial melt (Yamamoto-Kawai et al., 2009; Evans
et al., 2014), these regions are quickly being pushed closer
or past biologically important thresholds. Already today, the
consequences of these anthropogenic changes are visible in
the marine ecosystem and manifest themselves as species
range shifts, changes in abundance, growth, condition, be-
havior and phenology, and community and regime shifts
(Wassmann et al., 2011).

These anthropogenic changes have large implications for
the ecosystem and the global carbon cycle and climate. To
monitor these changes, disentangle their effects from those
caused by natural variability, and improve our mechanis-
tic understanding of the ecosystem dynamics, we designed
an observatory capable of continuously recording a broad
suite of ecosystem variables in the northeastern Chukchi Sea
(Figs. 2–4).
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Figure 1. Chukchi Sea continental shelf (64 to 74◦ N
and 180 to 157◦W) annual sea surface temperature
anomaly over the 1900–2016 period of record from the ex-
tended reconstructed sea surface temperature (SST) dataset
(Smith et al., 2008). The data are publicly available here:
https://www.ncdc.noaa.gov/data-access/marineocean-data/
extended-reconstructed-sea-surface-temperature-ersst-v5 (last
access: 9 November 2018). Blue bars indicate colder than average
temperatures for the given year, whereas red bars indicate warmer
than average temperatures. The annual anomalies were computed
by subtracting the long-term mean (0.114 ◦C).

180˚ −175˚ −170˚ −165˚ −160˚ −155˚

62˚

64˚

66˚

68˚

70˚

72˚

Chukchi 
Sea

Beaufort 
Sea

Bering Sea

Gulf 
of

Anadyr

Herald
Shoal

Hanna
Shoal

East 
Siberian 

Sea
Wrangel

Island

SIBERIA ALASKA
Point Hope

Cape Lisburne

Icy Cape

Wainwright

Barrow

Kotzebue
Sound

Norton
Sound

Chirikov
Basin

Yukon 
River

H
er

al
d 

Ca
ny

on

C
en

tra
l C

ha
nn

el
Barr

ow
 Cany

on

Bering
Strait

Kivalina

Kotzebue

Savoonga

Wales

Shishmaref

Nome 1

10

100

1000

Depth (m)

200 m80 m

45 m

35 m

25 m

Gambell
St. Lawrence

Island

Figure 2. Bathymetry of the Chukchi, northern Bering, East
Siberian and eastern Beaufort seas. The Chukchi Ecosystem Ob-
servatory (CEO) near Hanna Shoal is marked with a yellow star.
General circulation patterns are shown with arrows: black – Alaskan
Coastal Water and Alaskan Coastal Current, dividing into the Shelf-
break Jet (right) and Chukchi Slope Current (left, Corlett and
Pickart, 2017); orange – Anadyr, Bering Sea, and Chukchi Sea
Water; purple – Siberian Coastal Current; yellow – Beaufort Gyre
boundary current. “Water” designations were used for locations
where persistent currents have not been identified and named yet.
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Figure 3. Illustration of the mooring array and the ecosystem at the observatory site. (A) Mooring array, (B) brine rejection, (C) dark
winter, (D) sea ice algae bloom, (E) receding sea ice, (F) phytoplankton bloom, (G) stratification, (H) vertical gradient of nutrients and
inorganic carbon, (I) sinking particulate organic matter, (J) rich benthic ecosystem, (K) foraging walrus, (L) Arctic cod, (M) storm-induced
mixing, (N) senescent planktonic ecosystem, (O) Research Vessel Sikuliaq, and (P) glider. The illustration was painted by Klara Maisch.
A high-resolution version can be downloaded from her personal website at https://klaramaisch.com/chukchi-sea-mooring-illustration (last
access: 9 November 2018). Examples of walrus and bearded seal sounds are available at http://mather.sfos.uaf.edu/~seth/CEO/Sounds.html
(last access: 9 November 2018). A movie describing the observatory in more detail is available at https://www.youtube.com/watch?v=
ypmzTuAQ98k&feature=youtu.be (last access: 9 November 2018).

2 The Chukchi Ecosystem Observatory

The CEO is an array of closely colocated subsurface
moorings in the northeast Chukchi Sea (71◦35.976′ N,
161◦31.621′W; Figs. 2–4; https://www.youtube.com/watch?
v=ypmzTuAQ98k&feature=youtu.be, last access: 9 Novem-
ber 2018). The CEO is situated in 45 m of water on the
southeastern flank of Hanna Shoal within a productive bio-
logical “hotspot” (Grebmeier et al., 2015). The shoal’s shal-
low depths result in deep ice keel groundings (Barrett and
Stringer, 1978) and the accumulation of thick ice, which
serves as an important habitat for walrus and other ani-
mals (Jay et al., 2012). The exact observatory siting and our
ecological understanding of the greater region are based on
many years of multidisciplinary sampling on the NE Chukchi
Shelf, including those of the Chukchi Sea Environmental
Studies Program (Day et al., 2013), the Chukchi Offshore
Monitoring in Drilling Area (Dunton et al., 2014), and the
Distributed Biological Observatory (DBO; Moore and Greb-
meier, 2018).

The CEO moorings carry sensors that collectively mea-
sure an extensive suite of physical, biogeochemical, and bio-
logical variables (Fig. 4). These sensors allow us to observe
and understand the phenology and connections within this
Arctic marine ecosystem. The sensors capture temporal vari-
ations in sea ice cover and thickness, light, currents, waves,

water column structure, and concentrations of dissolved oxy-
gen, nitrate, inorganic carbon species, and particulate matter.
They document the presence of phytoplankton blooms and
export, zooplankton abundance and vertical migration, the
presence of Arctic cod and other fishes, and the vocaliza-
tions of marine mammals. The CEO is designed to monitor
the ecosystem year-round, making it well-suited for studying
interactions among ecosystem components, especially dur-
ing the poorly documented winter months. Although to our
knowledge, no other single Arctic monitoring site measures
the full suite of variables collected by the CEO, of course
many of the individual measurements are also made else-
where across the Arctic. With time, we expect that insights
derived from the CEO observations will be extended to other
Arctic shelf ecosystems and trigger new comparative studies.

3 The Chukchi seascape

The artist’s depiction of the Hanna Shoal ecosystem (Fig. 3)
illustrates the seasonal cycle at the CEO site (Fig. 3A). Mov-
ing from left to right, Fig. 3 captures seasonal shifts from the
ice-covered winter, into the productive summer, and finally
into the stormy and biologically senescent autumn.

Through heat loss, sea ice formation, and brine rejection
(Fig. 3B) in late fall and winter, the water column over the
Chukchi Shelf becomes more saline and vertically homoge-
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nized (Weingartner et al., 2005), deepening the mixed layer
depth to a maximum of ∼ 36 m in March (Peralta-Ferriz and
Woodgate, 2015). Although nutrients are in abundant supply
from the incoming Anadyr-origin waters, planktonic produc-
tion remains limited due to the scarcity of light (Fig. 3C).
Over the course of winter, continued heat loss to the atmo-
sphere leads to thermodynamic thickening of the sea ice,
while convergence of the ice pack leads to mechanical thick-
ening in the form of pressure ridges. Divergence of the ice
pack creates open water in the form of leads and polynyas,
which during winter will freeze and thicken through the same
processes. As the light begins to return in the spring, diatoms
and other algae begin to bloom within the ice matrix and
at the ice–water interface (Fig. 3D; Ambrose et al., 2005;
Gradinger, 2009).

It is not until late May or June, when the days are long,
insolation is strong, and warm water moves in from the
south that sea ice begins to melt, thin, and recede northwards
(Fig. 3E). During this time, the water column stratifies with
inputs of fresh meltwater and heat at the surface (Fig. 3G),
leading to a shoaling of the mixed layer depth to a minimum
of ∼ 12 m (Peralta-Ferriz and Woodgate, 2015). This is the
time when extraordinary phytoplankton blooms occur in the
nutrient-rich surface waters (Fig. 3F; Hill et al., 2018). These
processes set up strong vertical gradients of inorganic car-
bon and nutrients across the shallow water column (Fig. 3H;
Bates, 2006). These high rates of primary production sup-
port large fluxes of sinking particulate organic matter to the
seafloor (Fig. 3I, Lalande et al., 2007), thereby sustaining
a rich benthic ecosystem (Fig. 3J; Grebmeier et al., 2006,
2015), which attracts large numbers of marine mammals that
forage on the benthos (Fig. 3K; Jay et al., 2012; Hannay et
al., 2013) or Arctic cod (Fig. 3L).

Fall is characterized by surface cooling and more frequent
and intense storm systems with strong winds (Fig. 3M) that
erode the highly stratified water column. This process brings
remineralized nutrients and inorganic carbon from bottom
waters into the surface layer, supporting fall phytoplankton
blooms and the outgassing of carbon dioxide into the atmo-
sphere (Else et al., 2012; Hauri et al., 2013). Later, as sun-
light fades into the darkness of winter, primary production
further slows, the planktonic ecosystem becomes senescent
(Fig. 3N), and the benthos continues to thrive on organic mat-
ter stored in the sediments (Pirtle-Levy et al., 2009).

Due to the logistical complexities of operating in the re-
gion, most of the observational work done in the Pacific sec-
tor of the Arctic Ocean takes place during the sea-ice-free
summer and early autumn via research vessels (Fig. 3O). Au-
tonomous vehicles such as gliders have also found increasing
use in recent years (Fig. 3P; Baumgartner et al., 2014; Mar-
tini et al., 2016; Danielson et al., 2017).

4 Arctic observing challenges

A starting premise of our effort to improve the understanding
of this complex ecosystem and monitor ongoing changes is
that it is necessary to extend observations of the ecosystem
into the ice-covered winter and employ new observational
approaches that are appropriate for this challenging environ-
ment.

Given the presence of deep ice keels that regularly exceed
20 m depth – and may occasionally extend as deep as 30 m –
we restrict the uppermost sensor package of our observatory
to 33 m below the surface, leaving only 12 m of the water
column safe for mooring instrumentation and hardware. Al-
though we cannot deploy instruments in the upper 30 m of the
water column when sea ice is present, upward looking acous-
tic instruments in the array provide observations above the
top-mooring package. An Acoustic Zooplankton Fish Pro-
filer (AZFP, manufactured by ASL Environmental Sciences)
measures the presence and abundance of zooplankton and
fish and ice draft, while a TeledyneRDI Acoustic Doppler
Current Profiler (ADCP) records current velocity and direc-
tion. During sea-ice-free conditions, the ADCP instrument
also quantifies the height, period, and direction of surface
waves.

One example of purpose-built technology for the CEO is
a novel “freeze-up detection mooring”, which measures up-
per water column stratification and heat content through the
fall up to the time of freeze-up in ice-covered seas (Fig. 4c).
It was first deployed in fall 2015. The freeze-up detection
mooring was outfitted with an expendable surface float that
housed a satellite communications package, a tether release,
an inductive modem, and a sea surface temperature sen-
sor. The surface float was connected to four Sea-Bird SBE
37 inductive modem conductivity–temperature–depth sen-
sors (CTDs) that transmitted hourly temperature, salinity and
pressure to the surface float from four subsurface depths
(8, 20, 30, and 40 m), along with a subsurface camera that
records and sends digital images of the upper water column.
The advance of the fall ice pack was closely monitored with
satellite imagery and the surface float provided simultaneous
real-time monitoring of the temperature and salinity through-
out the water column leading up to ice formation. When the
ice edge was within 1 day of overrunning the mooring and
sparse ice chunks were already floating by, the surface float
was remotely released from the mooring, leaving a mid-depth
subsurface float to provide floatation for the portion left be-
hind. The data from this mooring are presented and discussed
below (Fig. 5).

Cold seawater (temperatures below 0 ◦C for most of the
year) decreases the capacity of all batteries. Some instru-
ments are powered with lithium batteries that provide a
higher power density. Engineering constraints dictate the
trade-offs between the various sensor battery packs and the
desired sampling rates. For example, due to the large power
demand of the Kongsberg Contros HydroC pCO2 sensor, its
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Figure 4. Illustration of the Chukchi Ecosystem Observatory (CEO), including the (a) biophysical, (b) biogeochemical, and (c) freeze-up
moorings. Note that the freeze-up mooring includes a surface package, whereas the other two moorings only reach up to 33 m depth. Sensors
are calibrated with as many in situ samples as possible. Calibration samples are always collected upon deployment and recovery of the
moorings and, depending on other research activity nearby our site, also at other times of the year. pCO2 and pH sensors were added in
summer 2016.

sampling rate had to be decreased to once every 12 h but the
AZFP instrument has sufficient power and memory to sample
every 15 s for the entire year.

A dedicated vessel charter for servicing the remote CEO
is also not cost-effective given the 2000 km distance to the
nearest deep water, year-round ice-free port Dutch Harbor
in Unalaska, Alaska. We thereby rely on vessels of oppor-
tunity during the summer months to deploy and recover the
CEO as part of other funded shipboard research. By partner-
ing with other oceanographic research teams that are operat-
ing in the region, we are also able to collect water samples
from the CEO site to provide for in situ calibration of sensors
throughout the deployment. Furthermore, ship-based obser-
vational efforts such as the Arctic Marine Biodiversity Obser-
vatory Network and the DBO programs add spatial context to
the CEO data. Conversely, the CEO can help place research
cruise data into a broader temporal context, including vari-
ability on scales ranging from the synoptic to the interannual
(Danielson et al., 2017).

Despite design advances and features, limitations and
challenges still remain to be overcome. For example, without
real-time data communication capabilities, instrument func-
tion and data returns can only be assessed annually follow-
ing the CEO turnaround. This delays data availability and
makes the approach poorly suited for adaptive sampling ef-
forts after deployment. Furthermore, throughout the winter,
there are currently no ship-based efforts or autonomous ve-

hicles operating in the region. The result is limited spatial
context during winter and early spring, and an inability to
collect samples for frequent calibrations of the CEO’s de-
ployed sensors. Many of the measurements made from the
CEO are collected at a single depth within the water column,
thus limiting the interpretation of upper water column vari-
ables, especially over the winter months. Future innovations
and investments in technologies such as profiling winches,
direct-to-shore submarine cable communications, or under-
ice autonomous assets are a few possibilities that could miti-
gate some of these challenges.

5 First scientific results

The 2015–2016 data returns from the CEO provide a
unique window into the year-round Arctic marine ecosystem
(Fig. 6). We also present new data showing water column
turnover and cooling processes during the freeze-up period
(Figs. 5 and 6).

The physical conditions measured at the CEO include cur-
rents, waves, temperature, salinity, ice draft, and light (photo-
synthetic active radiation, PAR) (Figs. 5 and 6a–d). The tem-
perature and salinity cycles are tied to lateral advection, sur-
face heat fluxes, ice cover, and winds. Sensors on the freeze-
up detection buoy show that the upper 20 m of the water
column was well mixed and steadily lost heat from around
4 ◦C at the beginning of September to −1.5 ◦C shortly be-
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Figure 5. Time series from the NOAA-operated Wiley Post-Will Rogers Memorial Airport weather station and the Chukchi Ecosystem Ob-
servatory freeze-up detection mooring deployment in 2015. Shown are (a) wind speed and direction (arrows pointing downwind), (b) tem-
perature (◦C), and (c) salinity. Conductivity and temperature sensors were moored at 8, 20, 30, and 40 m (dashed lines) from early September
until close to freeze-up at the beginning of November.

fore sea ice formed at the beginning of November (Fig. 5).
Water temperature at 30 m depth largely followed bottom wa-
ter (40 m) temperature during September and early October.
However, several large departures when 20 and 30 m temper-
atures briefly warmed and even exceeded those at the sur-
face could indicate the effects of lateral advection and/or the
passing influence of intra-pycnal eddies (Lu et al., 2015). The
bottom water temperature steadily increased from−1.5 ◦C at
the end of September to 1 ◦C during freeze-up at the begin-
ning of November, reversing the vertical temperature gradi-
ent in mid-October. Between September and November wind
speeds in excess of 10 m s−1 were observed during the pas-
sage of several low-pressure systems (Fig. 5a). At peak inten-
sity, these storm events did not appear to erode stratification
at the CEO site. However, wind direction reversals, from pre-
dominantly upwelling-favorable directions (northeasterly) to
downwelling-favorable directions (southwesterly), were as-
sociated with periodic depressions of the pycnocline. After
freeze-up, water temperatures at the 34 and 43 m depths re-
mained near the freezing point (−1.6 to−1.8 ◦C) through the
end of the record in August.

Salinity followed a more cyclical progression of fresh-
ening between June and November and salinization in the
other half of the year. Ice cover persisted for nearly 9 months

(November through August), and the thermodynamic thick-
ening and thinning of the ice can be seen in the overall shape
of the ice draft time series (Fig. 6a). Some ice keels extended
to deeper than 10 m below the surface, although an ice draft
of 1–3 m was more typical. The absence of deeper keels may
be due to the upwind proximity of Hanna Shoal, which would
likely block or deflect deep-keeled ridges from the northeast.
At the same time, the absence of extended midwinter periods
of open water demonstrates that the CEO lies outside any
polynya formation zone due to the proximity of the shallow
Hanna Shoal.

Nitrate is the limiting nutrient in the Chukchi Sea (Walsh
et al., 1989) and therefore is an important bottom–up con-
trol for the ecosystem. We deployed a SUNA V2 nitrate
sensor (Sea-Bird Scientific) on the upper instrument pack-
age (34 m below the surface; Fig. 6e). Over 26–28 August
2015, shortly after deployment, nitrate values dropped from
above 15 µM down to between 5 and 7.5 µM during a strong
and prolonged storm. Nearby shipboard wind measurements
exceeded 10 m s−1 for part of each day from 25 to 29 Au-
gust 2015. The drop in nitrate concentrations was simulta-
neous with a sharp increase in bottom water temperatures
(Fig. 6c) and an increase in dissolved oxygen (Fig. 6f), likely
indicating that strong mixing of surface waters with warm,
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Figure 6. Data from the 2015/16 deployment. Shown are (a) ice draft (m), (b) salinity, (c) temperature (◦C), (d) photosynthetically active
radiation (PAR, µEcm−2 s−1), (e) nitrate (NO3, µmolL−1), (f) oxygen (O2, µmolkg−1), (g) fluorescence (mg m−3), Nitzschia frigida flux
(million cells m−2 d−1), (i) diatoms (million cells m−2 d−1), (j) acoustic zooplankton fish profiler (AZFP, days) 125 KHz, (k) AZFP 38 KHz
(days), and (l) acoustic spectra (Hz). In situ NO3 water samples were collected at times of the CEO deployment and recovery and were
analyzed with standard wet chemical determinations of nitrate+ nitrite of frozen samples at the Chesapeake Biological Laboratory. Using
the calibration samples as anchor points, a drift of 12 µmolL−1 throughout the deployment was found and corrected by linearly detrending
the data.

nutrient-depleted, and oxygen-rich waters down to the depth
of the sensors. Nitrate and temperature remained relatively
constant for a couple of weeks before returning to higher and
lower values, respectively, in the middle of September. While
dissolved oxygen concentrations increased slowly from mid-
September until freeze-up, nitrate concentrations declined as
water column stratification weakened and overturning was

initiated (Fig. 5) due to the strong heat and buoyancy losses
from the surface ocean. These coincident changes indicate
that the decline in nitrate during this time period was driven
in part by the dilution of bottom water nitrate with low-nitrate
surface waters, although some fall production also occurred
at this time: chlorophyll a fluorescence at the CEO was mea-
surable through at least early November (Fig. 6g). Follow-
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ing freeze-up, nitrate concentrations slowly increased from
a low of approximately 5 µM in early November to 12 µM in
early May. These increases and the anticorrelated decrease in
dissolved oxygen reflect the ongoing remineralization of or-
ganic matter in sediments and the water column throughout
the winter.

Chlorophyll a fluorescence and sediment trap collections
reveal a seasonal cycle of phytoplankton and ice algae ex-
port from surface waters. Large chlorophyll a peaks were
observed in August and September. In June, chlorophyll a

fluorescence increased from a low wintertime background
level and remained elevated with intermittent peaks through-
out the summer. Because the sensor is located below the
summer mixed layer, it is not well situated to record the
phytoplankton that resides within the upper water column
or within/under the ice. However, the identification of sed-
iment trap contents indicates that Nitzschia frigida, an ice-
obligate pennate diatom, began sinking from the ice as early
as April, with large pulses in May and June (Fig. 6h). Dur-
ing these times, sea ice and surface snowmelt would have
begun, a process that would flush diatoms out of the ice ma-
trix. Large quantities of phytoplankton were also collected
in the traps in September/October and June/July, correlating
with the chlorophyll a peaks, suggesting blooms in spring
and fall.

Wavelet analysis of the AZFP acoustic backscatter at
125 kHz indicated a strong diurnal (1-day period) signal
(Fig. 6j). This diurnal signal was found in open-water con-
ditions in fall when the zooplankton undergo daily migra-
tions up and down in the water column. More surprisingly,
there were also strong indications of diurnal migrations in
midwinter (January to March) under ice cover. In the spring,
backscatter at 125 kHz was present but not strongly associ-
ated with diurnal migration.

The 38 kHz active acoustic data suggest a strong diurnal
migration of fish with swim bladders from August into Octo-
ber, diminished backscatter from December to February, and
then higher background levels with intermittently strong re-
turns in April through July (Fig. 6k).

The passive acoustic spectra reveal the timing and source
of underwater sounds, notably bearded seal vocalizations in
spring and early summer (Fig. 6l).

6 Concluding thoughts

Over the past several decades, moorings have been deployed
at select sites across the Arctic as tools for providing in-
sights into the year-round functioning of this system (e.g.,
Woodgate et al., 2012; Nishino et al., 2016; Polyakov et
al., 2017; de Jong et al., 2018). These moorings are usually
outfitted with sensors to measure physical properties and,
less frequently, biological and geochemical samplers, such
as nitrate sensors and sediment traps. To obtain a better un-
derstanding of polar ecosystems, ship-based biological and

geochemical sampling often complements moored observa-
tories (e.g., Southern Ocean Observing System, Fram Strait
Arctic Outflow Observatory). Much has been learned from
these endeavors, especially with regard to water mass circu-
lation and the functioning of the ecosystem and biological
pump (e.g., Forest et al., 2013; Kenitz et al., 2017; Eriksen
et al., 2018). The CEO adds a highly outfitted complement
of acoustic, optical, electrochemical, and gas membrane sen-
sors as well as direct sample collection devices. In doing so,
the CEO dataset illuminates multiple linkages of the physi-
cal, chemical, and biological environment. This broad suite
of observations represents a necessary but mostly untried ap-
proach to integrated ecosystem research and monitoring in
the Arctic. To our knowledge, the CEO is the most extensive
moored observatory for the continuous recording of ecosys-
tem variables in an ice-covered sea.

The Arctic has already undergone and will continue to un-
dergo transformative physical and chemical changes. Such
changes may trigger a cascade of consequences that propa-
gate into the regional ecosystem and may test its resiliency
and vulnerability. The extensive year-round dataset derived
from the CEO is providing insights into how the ecosystem
operates, covering physical, chemical, and biological pro-
cesses. These baseline data also offer quantitative compar-
isons in future years for assessing ecosystem responses to an
altered climate. Even though a distinction of secular trends
from natural interannual, decadal, and seasonal variability
will require a time series of around 40 years in high-latitude
regions (Henson et al., 2010), gaining a better understand-
ing of the system’s current state and mechanisms that govern
its variability is a necessary first step towards that goal. The
data from the observatory are available to improve biogeo-
chemical and ecological models that allow us to test, ana-
lyze, and prepare for the future. The status and trends in the
marine ecosystem of the northeastern Chukchi Sea, observed
through seasonal ship field programs, moorings such as the
CEO, and satellite observations will provide critical informa-
tion on the status of the ecosystem and associated ecosystem
services it can provide. For example, local subsistence users
are interested in a healthy food web that supports traditional
food sources. Reduced sea ice may increase the potential of
the northward migration of subarctic species, including com-
mercial fish species that will alter those food webs (Frainer
et al., 2017). The CEO will allow year-round tracking of the
marine ecosystem in the northeastern Chukchi Sea and thus
can provide data valuable to an ecosystem-based approach to
resource management.

Arctic changes, including human-induced influences on
climate, are expected to affect high-latitude food webs.
A better understanding of the driving factors of potential
ecosystem shifts can only be gained through coordinated
and simultaneous measurements such as these that span a
wide range of physical, chemical, and biological indicators.
Quickly arising issues such as ocean acidification, warming,
freshening, and deoxygenation require interdisciplinary ef-
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forts. While ship-based multidisciplinary efforts remain valu-
able components of observing efforts, these only provide
episodic data coverage. On the other hand, continuous time-
series moorings generally do not include a large array of
disciplines (Newton et al., 2015). The model of extensive
ecosystem observation capabilities that the CEO provides
can be used in other ecosystems beyond the challenging Arc-
tic environment. For example, an ecosystem observatory for
the Gulf of Alaska in the subarctic Pacific is currently being
developed and is using some of the lessons learned here.

Data availability. Post-processed data are available through http:
//www.chukchiecosystemobservatory.org/ (last access: 9 November
2018) and http://www.aoos.org (last access: 9 November 2018).
Data from the ice detection buoy are available at https://portal.
aoos.org/old/arctic#metadata/75373/station (last access: 9 Novem-
ber 2018). This is NPRB publication no. 678.
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